
Extension of Marcus Picture for Electron Transfer Reactions with
Large Solvation Changes
Rodolphe Vuilleumier, Kafui A. Tay,† Guillaume Jeanmairet, Daniel Borgis,* and Anne Boutin
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ABSTRACT: The standard Marcus theory of charge transfer
reaction in solution, relying on a Gaussian solvation picture, or,
equivalently, on a linear response approximation, and involving two
parameters, the reorganization energy and the reaction free-energy
parameter, may fail when the solvation has a different character in the
reactant and product state. We propose two complementary
theoretical extensions of Marcus theory applying to those cases,
based either on a two-Gaussian-states solvation picture, or on a non-
Gaussian solvation picture. As illustration, we show that such
situations arise even for simple half oxido-reduction reactions
involving the Cu+/Cu2+ or Ag0/Ag+ couples, for which electron
transfer free-energy surfaces have been generated using first-principle
molecular dynamics simulations. The two theoretical extensions are shown to exhibit the correct nonlinear response behavior and
to reproduce the simulation results quantitatively, whereas a simple one-Gaussian-state Marcus description breaks down.

I. INTRODUCTION
The Marcus theory of charge transfer reactions in solution has
provided a very simple two-chemical state picture, based on two
intersecting parabolas, that has made it possible to understand
the experimental data, to interpret them quantitatively, and to
make predictions.1 In the early versions, the solvent was
modeled by either a dielectric continuum or a harmonic
phonon bath.1−4 Starting with the pioneering work of Warshel
in the early 1980s,5 the Marcus theory has fostered the
computational modeling and molecular interpretation of those
reactions using force field molecular dynamics (MD) and, more
recently, first principle molecular dynamics (FPMD).6,7 One of
the main contributions of Warshel was to exhibit the so-called
energy-gap coordinate, ΔE, as the relevant microscopic reaction
coordinate, as suggested originally by Marcus,8 and to show
that, to a very good approximation, this quantity obeys
Gaussian statistics.9 When translated to free energies, this
property gives rise to Marcus’ two parabola picture. Since the
study of Kuharski et al.10 for ferrous−ferric ion exchange in
water, this Gaussian property has been verified many times,
either for electron or proton transfers in solution or in complex
environment such as proteins,6,11−18 and with force-field or first
principle MD.19−23 It also has been recognized that the strict
Gaussian assumption is equivalent to a linear response
approximation.24,25 It implies identical solvent fluctuations in
the two states and thus identical free-energy curvatures for
those states.26 Departure from linear response can be estimated
through free-energy integration methods, using ΔE as the
relevant reaction coordinate, and it even can be used to design
an efficient algorithm to compute the reaction free-energy and
reaction barrier.24

It has been noticed in the literature, although this fact is
sometimes overlooked, that the Gaussian assumption (or linear

response) is, by essence, incompatible with the existence of
different solvation states in reactants and products and, thus, of
different curvatures of the free-energy wells, or two different
Gaussian widths.26 Such a situation can occur when the
solvations of the species have different characters in reactants
and products, as postulated theoretically by Kakitani and
Mataga27−29 and illustrated by Carter and Hynes for the MD
simulation of a neutral to ionic pair internal conversion in a
polar solvent: The computed free-energy curvature correspond-
ing to solvent fluctuations around the neutral pair or the ion
pair do differ by a factor 1.6.30 More recently, Blumberger
encountered a similar deviation from the linear response regime
underlying the Marcus theory in the case of the Cu2+/Cu+

oxido-reduction reaction, which he studied using FPMD
simulations.31 This nonlinear effect was attributed to the
chemical specificity of copper ions with respect to water and a
strong coordination change from Cu+ to Cu2+, going from a
dihydrate to a 5-fold distorted pyramidal structure. We will
show in this paper a similar breakdown of Marcus oxidation
theory for the Ag0/Ag+ redox couple, where the reaction goes
from a neutral species to a charged species and involves a
drastic change in the solvation structure and dynamics. Note
that copper and silver in various oxidation states have been
studied by FPMD at several other occasions.32−34

The purpose of the present paper is to present extensions of
the Marcus theory to cases such as those described above,
where the solvation properties are markedly different in the
reactant and product chemical states. We thus propose a global
and coherent picture that reconciles the observation of two
Gaussians of different widths with Marcus theory. We point out
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that a clear distinction should be made between a chemical
state (with given electronic distribution) and a solvation state
(with given solvent structural and fluctuations properties). Our
first extension will thus be a direct generalization of Marcus
theory based on a two chemical state/two solvation states
picture rather than the two-chemical-state/one-solvation-state
picture underlying Marcus theory. The second, separate,
although complementary extension will be a non-Gaussian
theory. Note that there have been several extensions of Marcus
theory proposed in the literature, either relying on limiting
cases of the harmonic bath Kubo−Toyozawa Hamiltonian35,36

or focused on corrections to the dielectric continuum solvent
model.37 We propose here a statistical mechanics approach,
involving a minimum number of relevant physical parameters,
that is not committed to a specific underlying Hamiltonian or
to a (generalized) dielectric solvent description.
Although of general scope for charge transfer reactions in

solution, our theoretical considerations will be focused on
oxidoreduction half reactions, such as Cu+ → Cu2+ + e− and Ag0

→ Ag+ + e− and they will be applied to those reactions in bulk
water. For this purpose, we will use the published FPMD
results of Blumberger for Cu+/Cu2+ in water and an original set
of data that we have generated with a similar method for Ag0/
Ag+. Our approach should be valid also for the case of electron
transfer full reactions. This is a challenging situation for FPMD,
because of the presence of both donor and acceptor in the same
simulation box, thus demanding careful treatment of self-
interaction.38,39

This paper is organized as follows: section II describes the
theoretical foundation of Marcus theory, formulated in a
molecular rather than dielectric continuum solvent framework,
and its extensions. The theory is compared to FPMD free-
energy calculations in section III, and a conclusion is proposed
in section IV.

II. THEORY
The model discussed here can be applied to a general charge transfer
reaction of the form

+ → +− −D A D A (1)

(D and A being possibly charged molecular species). To fix ideas and
stick to our applications, we consider an oxidoreduction half reaction:

→ + −R O e (2)

where R and O are the reduced and oxidized species. If, for the sake of
generality, we denote the reactant and product states as 0 and 1, we
will keep in mind the correspondence R ≡ 0 and O ≡ 1.
We start by recalling the basis of Marcus theory, formulated with

the microscopic energy gap variable ΔE instead of the macroscopic
solvent polarization variable used originally by Marcus.1 The derivation
is standard but makes it possible to introduce the various quantities of
interest, and the relations to be generalized.
Marcus’s Theory: A Gaussian Solvation Model. We first

introduce the energy gap coordinate, here also the vertical ionization
energy, as the difference between the oxidized and reduced state
energies for a given solvent configuration, RI (denoting the position of
all atoms):

Δ = −E E ER R R({ }) ({ }) ({ })I I I1 0 (3)

In the “molecular” Marcus theory presented here, it plays the crucial
role of the order parameter.
The probability distribution of observing a given value ε of the

vertical ionization energy in the reduced and oxidized states is
expressed as

ε = ⟨δ Δ − ε ⟩ η =η ηp E R( ) ( ({ }) ) , 0 or 1I (4)

The logarithm of this probability distribution determines, upon a
constant, the Landau free-energy profile for the energy gap ε:

ε = − εη η ηW A k T p( ) ln ( )B (5)

where the constant Aη is the full free energy of the state η. Because the
integral of the probability is unity, the Landau free energy satisfies the
following:

∫= − ε −β εη ηA k T Wln d exp( ( ))B (6)

with β = 1/kBT.
It can be shown that the Landau free energies of the reduced and

oxidized states are related by9

ε = ε + εW W( ) ( )1 0 (7)

This is an exact and key relation: The difference between the reduced
and oxidized Landau free energies is exactly the vertical ionization
energy.

Marcus also made the fundamental assumption that the probability
distributions (pη) are Gaussians

ε = −
ε − Δ

λ π λη
η

η η
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and the Landau free energies are then parabolas

ε = +
ε − Δ

λ
+ π λη η

η

η
ηW A

E k T
k T( )

( )

4 2
ln(4 )B

2
B

(9)

where we have introduced ΔEη, the equilibrium value of the energy
gap, and λη, the reorganization energy, in the product (η = 1) or
reactant (η = 0) states. Because of eq 7, the curvatures of W1 and W0
must be equal, that is,

λ = λ = λ1 0 (10)

Furthermore, the following two relations among ΔE1, ΔE0, λ, and ΔA
hold

λ = Δ − ΔE E1
2

( )0 1 (11)

Δ = Δ + ΔA E E1
2

( )0 1 (12)

which also justifies calling λ = ΔE0 − ΔA the reorganization energy,
the difference between the vertical ionization energy at equilibrium
and the free energy difference between the product and reactant states.
If we use λ and ΔA as parameters, the Landau free energies for the
reactant and product state are written as follows:

ε = + ε − λ − Δ
λ

+ π λW A
A k T

k T( )
( )

4 2
ln(4 )0 0

2
B

B (13)

ε = + Δ + ε + λ − Δ
λ

+

π λ

W A A
A k T

k T

( )
( )

4 2
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1 0
2

B

B (14)

The free energy difference ΔA = A1 − A0 can be defined (and
computed for a given molecular model) through a thermodynamic
integration formula:

∫ ∫Δ = η
η

= η⟨Δ ⟩η

η
ηA

E
E

R
Rd

d ({ })

d
d ({ })

I
I0

1

0

1

(15)

Journal of the American Chemical Society Article

dx.doi.org/10.1021/ja2069104 | J. Am. Chem.Soc. 2012, 134, 2067−20742068



where the subscripted brackets indicate a canonical average with the
Hamiltonian H(η) defined by the intermediate PES

= − η + η

= + ηΔ

ηE E E

E E

R R R

R R

({ }) (1 ) ({ }) ({ })

({ }) ({ })

I I I

I I

0 1

0 (16)

Defining, as in eq 4, the probability on this intermediate PES defined
for a value of η between 0 and 1, the associated Landau free energy, eq
5, also fulfills the exact relation

ε = ε + ηεηW W( ) ( )0 (17)

so that, from the Gaussian approximation defined above, we have

ε = + ε − λ + ηλ − Δ
λ

+

π λ + Δ

η

η

W A
A k T

k T A

( )
( 2 )

4 2
ln(4 )

0
2

B

B (18)

Δ = ηΔ + ηλ − η ληA A 2
(19)

It follows that

⟨Δ ⟩ = Δ + λ − ηληE AR({ }) 2I (20)

is a straight line with a slope of −2λ and is equal to ΔA at η = 0.5.
To connect to some arguments given in section I, we note that the

latter formula amounts to a linear response approximation

⟨Δ ⟩ = ⟨Δ ⟩ − ηβ⟨δΔ ⟩ηE E ER R R({ }) ({ }) ({ })I I I0
2

0 (21)

Assuming from the start that such a linear response relation applies,
and invoking the exact thermodynamic perturbation formula

Δ = − −
ηΔ

η
⎛
⎝⎜

⎞
⎠⎟A k T

E
k T

R
ln exp

({ })I
B

B 0 (22)

it is easy to show that eq 21 boils down to an exact second-order
cumulant expansion of the average, so that ΔE must be a Gaussian
variable, and all the derivations above follow. Gaussian approximation
or linear response are thus equivalent qualifiers.25

Note that extensions of the one-Gaussian approximation have been
proposed very early by Marcus himself to incorporate molecular
vibrations coupled to the electron transfer (and the so-called inner
sphere)3,40 and, later on, for treating proton transfer reactions,4

reduction induced dissociation,41,42 or proton coupled electron
transfer (PCET) reactions.43−45 Those extensions consist in
introducing extra coordinates in addition to the solvent, generally
Gaussian variables, that are coupled to the charge transfer and lead to
reorganization energies that add to the solvent one. In this work, we
rather focus on the ΔE collective coordinate itself and investigate how
the (nonlinear) coupling to all other coordinates results in a non-
Gaussian behavior for ΔE, described below in two different ways.
Extension to a Two-Gaussian Solvation (TGS) Model.We now

assume that the solvent can be partitioned into two solvation states,
labeled S0 and S1, with different fluctuation properties. For each of
them, the Landau free energy, as a function of the vertical ionization
energy, is supposed strictly Gaussian. The parameters describing the
Landau free energy in each solvation state are AS,0, λS and ΔAS, S =
S0,S1. The solvation states S0 and S1 are assumed to be favored in the
reactant and product states, respectively. The free energy difference
between the S1 and S0 solvation states is ΔSA0 = AS1,0 − AS0,0 when the
system is in the reactant state. We should then have ΔSA0 > 0 for S0 to
be indeed favored in the reactant state. ΔSA1 = ΔSA0 + ΔAS1 − ΔAS0 is
then the free energy difference between the two solvation structures in
the product state. It should be on the contrary negative, S1 being
favored in the product state.
Partitioning the solvent configuration space in two regions

corresponding to the solvation states S0 and S1, the probability
distribution pη(ε) for a vertical energy gap ε in the intermediate PES
indexed by η, defined by eq 4, is given by

∫

∫

∫

∫
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where the indexes S0 and S1 of the integrals indicate integration over
the phase space regions associated to the two solvation structures.
Introducing

∫ ∏= − −βη ηA k T ER Rln d exp( ({ })S S
I

I I, B
(24)

the free energy associated to the solvation structure S and

∫ ∏
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the Landau free energy in solvation state S related to the conditional
probability that the vertical ionization energy is equal to ε knowing
that the solvation state is state S, we have, according to the Gaussian
property postulated for each solvation state, and eq 18 and 19

ε = +
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The vertical energy gap probability of eq 23 can be written as

ε =
−β ε + −β
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which defines the system free energy and the ε-dependent Landau free
energy as a function of η

= − −β + −βη η ηA k T A Aln(exp( ) exp( ))S SB , ,0 1 (29)
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It is easy to verify that the exact relation eq 17 for Wη(ε) is fulfilled
because it is fulfilled separately for each state.

The equilibrium vertical ionization energy, obtained as ∂Aη/∂η, is
thus defined as follows:

⟨Δ ⟩ = −β Δ + λ

− ηλ + −β
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using eq 27, which is the canonical average over the average vertical
ionization energies in the two solvation states. When the solvation
state S0 is favored (AS0,η ≪ AS1,η), the slope of ⟨ΔE({RI})⟩η as a
function of η is −2λS0, and it is −2λS1 when the solvation state S1 is
favored.
Extension to a Non-Gaussian Solvation (NGS) Model. An

alternative theoretical approach consists of departing from the
Gaussian assumption of eq 8and 9 and postulating from the beginning
a nonharmonic form for the Landau free energy in the reduced state 0

ε = ′ +
ε − Δ

λ
+ ε − Δ

+ ε − Δ
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a E
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with n > m and ΔE0 = λS0 + ΔAS0. According to the considerations of
eq 2, the Landau free-energy for the oxidized state is defined by W1(ε)
= W0(ε) + ε. We impose that the corresponding curve has a minimum
for ε = ΔE1 = −λS1 + ΔAS1, and the curvature at this point is 1/2λS1.
These conditions impose that
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and the symmetric expression for an, when permuting m and n. Here,

λ = Δ − Δ
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0 1

0 1 0 1 (34)

is the linear-response solvent reorganization energy defined by eq 10.
One does recover the harmonic case, an = am = 0, for λ = λS0 = λS1. The
model thus involves four parameters, λS, and ΔAS for each state, which
are reminiscent of (although not equivalent to) those in the previous
TGS model. The energy parameter A0′ can be considered as an
arbitrary free-energy shift. From there, the probability of a given
vertical energy gap on an intermediate PES indexed by η, and the
associated free energy and FES are defined by eqs 4 and 6 and can be
determined from the knowledge of Wη(ε), which was itself deduced
from W0(ε) through eq 17. Furthermore the equilibrium vertical
ionization energy is readily computed as

∫⟨Δ ⟩ = β ε ε −β εη η −∞

+∞
ηE A d WR({ }) exp( ) exp( ( ))I (35)

so that all quantities of interest are known through straightforward
one-dimensional integrals over the energy gap variable ε. In the
following, we limit ourselves to the simplest, generic approximation for
the Landau free energy in eq 32, that is, a fourth-order polynomial
with m = 3 and n = 4.

III. RESULTS−DISCUSSION
We begin by discussing the case of the Ag0 → Ag+ + e− reaction
for which we could compute the η-dependent energy gap,
⟨ΔE({RI})η⟩, using first-principle molecular dynamics simu-
lations (FPMD) and the methodology described in refs 19−23
and 31.
The FPMD simulations used the Density Functional Theory

(DFT) and the Born−Oppenheimer method. They were
carried out using the freely available program package
QUICKSTEP/CP2K,46 based on a hybrid Gaussian plane-
wave (GPW) approach, which combines a Gaussian basis for
the wave functions with an auxiliary plane wave (PW) basis set
for the density.47 We choose a triple-ζ valence doubly polarized
(TZV2P) basis set for oxygen and hydrogen atoms because it
has been shown to provide a good compromise between
accuracy and computational cost.48 For silver, we employed a

double-ζ valence plus polarization (DZVP) basis set, which was
specially optimized for molecular systems.49 Core electrons
have been replaced by the Goedecker−Teter−Hutter (GTH)
norm-conserving pseudopotentials.50−52 The cutoff for the PW
representation of the electronic density was set to 280 Ry. The
wave function optimization was performed using an orbital
transformation method.53 The gradient corrected exchange-
correlation functional BLYP54,55 was employed in the DFT
calculations, in the local spin density framework. At each time
step of the simulation, the electronic state of each oxidation
state, Ag+ and Ag0, was optimized, and the forces on the ions
were obtained as a linear combination of the Hellmann−
Feynman forces for each state.
The system consisted of one silver atom or cation in 64 water

molecules with periodic boundary conditions. The box length
for the cubic simulation box was 12.4085 Å. The time step for
the MD simulation was 0.5 fs, and constant temperature
conditions were imposed by a Nose−Hoover thermostat56,57

with a target temperature of 350 K. We generated six
simulations corresponding to increasing values of η (η = 0,
0.2, 0.35, 0.5, 0.8, 1.0). Each was separated into 1 ps of
equilibration and 5 ps of production at constant energy.
Reversibility was checked for η = 0.35, the point where the
transition between the solvation states occurs and where the
energy gap fluctuations are the largest.
The simulations make it possible to estimate the reaction

free-energy, ΔA, through the computation of ⟨ΔE⟩η in each
window and the integration formula, eq 15. The free-energy
curves Wη(ε) and the associated probabilities pη(ε) can be
reconstructed too, using weighted histograms techniques.58

The ⟨ΔE⟩η versus η curve obtained by simulation is displayed in
Figure 1. The estimated statistical errors bars are 0.03−0.1 eV,
that is, about the size of the symbols in the figure.

A highly nonlinear sigmoidal profile is obtained, which
departs notably from the linear Marcus prediction, even more
so than the previous result of Blumberger for Cu+/Cu2+31(see
also Figure 3). In the same figure, we present the best fit
corresponding to the TGS or NGS models: It can be seen that
both are able to reproduce the nonlinear sigmoidal behavior
with very good accuracy. The corresponding parameters are
given in Table 1. As noted before, the parameters λS0,1 and ΔAS0,1

have similar significance in the two models, but they are not
mathematically equivalent. Furthermore, the TGS model

Figure 1. Average vertical ionization energy for Ag0/Ag+ in aqueous
solution, as a function of the coupling parameter η: CP2K simulation
results (circles), Marcus theory (dashed line), Q-model of Matyushov
and Voth35 (dotted line), TGS model (red line), and NGS model
(blue dotted-dashed line).
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contains a fifth parameter, ΔSA0, that measures the free-energy
difference between the two solvation states in the reduced
charge state. For consistency, we have added to the table a best
fit for ΔSA0, otherwise keeping the NGS parameters. Using the
corresponding parameter set slightly alters the quality of the
TGS curve in Figure 1 but keeps it fully consistent with the
CP2K results. The applicability of the TGS model corroborates
the physical relevance of the two-solvation-state picture in that
case: one expects indeed different structural and dynamic
properties of the solvent around a neutral atom such as Ag0

(presenting furthermore a strong excitonic character34) or
around its charged cationic species Ag+. This assertion is
substantiated in Figure 2 where the Ag0/Hw and Ag+/Hw radial

distribution functions computed from the FPMD simulations
for η = 0 and η = 1, respectively, are displayed. The water
structure around Ag+ is typical of a positive ion, with
pronounced first and second shells around r = 3 Å and r =
4.5 Å, respectively, whereas the structure around Ag0 appears
very smooth and floppy, even more so than for a hydrated rare
gas atom. This floppiness can be attributed to the hyper-
polarizability of Ag0, which can be regarded as a Ag+/e− system
with a mobile electron interacting with the surrounding water.34

In Figure 1, in addition to the straight linear Marcus theory,
we also give the results of the Q-model of electron transfer by
Voth and Matyushov,35,36 in which deviation from the strict
linear response behavior is allowed through the nonlinear
coupling of the energy gap coordinate to an harmonic oscillator
bath. The presented curve corresponds to the best fit of this
three-parameter model to the simulation data. Even varying the
parameters, we found it impossible to reproduce the observed
sigmoidal shape. The physics introduced in the model, which
was able to account for electron transfer reactions involving
large polarizability changes,36 simply does not apply to the
present case.
Figure 3 presents similarly the ⟨ΔE⟩η results for the Cu+/

Cu2+ redox couple and the comparison to the TGS and NGS
models (see the corresponding parameters in Table 2). The
simulation data are those of Blumberger.31 They were

interpreted by the author as the interplay between two Marcus
linear curves intersecting close to η = 0.5 and corresponding to
the transition between two solvent coordination regimes. In our
interpretation suggested by application of both the TGS or
NGS models, the two solvation-state picture is completely
correct but manifests itself by a (slightly) sigmoidal curve,
rather than by the intersection of two linear regimes. The
question of the presence or not of an inflection point in the
curve is subtle by simple examination of the raw data, and it is
impaired by the simulation uncertainties. Note again that this
feature is very marked and unambiguous in the case of Ag0/Ag+.
Blumberger31 first suggested that the departure from linearity
may be due to two very different solvation shells for Cu+ and
Cu2+. The physical origin of the two solvation shells for Cu+

and Cu2+ is, however, different than for the case of Ag+/Ag0.
The solvation shell of Cu+ has been previously studied.31−33 It
was found that it forms a very strong Cu(H2O)2

+ complex with
linear geometry, further water molecules being pushed far away
from the copper. This was attributed to a d−s hybridization of
the copper orbitals.32 This hybridization does not occur,
however, or not as strongly, in the case of Ag+, as a result of a
larger energy gap between the d and s orbitals, as revealed from
calculated electronic absorption spectra.33 We therefore
attribute the very different solvation regime for Ag+/Ag0 to
the neutral rather than charged character of Ag0, combined with
its exceptional excitonic character generating a very loose
hydration structure; see Figure 2 and the associated discussion.
Note that, in contrast to the Cu2+/Cu+ or Ag+/Ag0, the Ag2+/
Ag+ couple behaves in very close accordance with the Marcus
linear picture.32,33

To better picture the TGS model and understand the
interplay between the TGS and NGS descriptions, we have
plotted in Figure 4 the oxidized and reduced diabatic free
energy curves W0,1(ε) for the Ag

0/Ag+ reaction, using the same
set of NGS-parameters (see Table 1) for consistency. Within
the TGS framework, for a given reduced or oxidized charge

Table 1. Models Parameters for Agaq
0 /Agaq

+ Obtained by
Fitting ⟨ΔE({RI})⟩η (in eV)

λS0 ΔAS0 λS1 ΔAS1 ΔSA0

TGS 1.25 −0.61 0.63 −1.36 0.4
NGS 0.74 −0.08 0.41 −1.58
TGS using NGS parameters 0.74 −0.08 0.41 −1.58 0.59

Figure 2. Ag/Hw radial distribution function for η = 0, that is, Ag0 (full
black line), and η = 1, corresponding to Ag+ (dashed red line).

Figure 3. Average vertical ionization energy for Cu+/Cu2+ in aqueous
solution as a function of the coupling parameter η: CPMD simulation
results of ref 31 (circles), Marcus theory (dashed line), TGS model
(red line), and NGS model (blue dotted-dashed line).

Table 2. Models Parameters for Cuaq
+ /Cuaq

2+ Obtained by
Fitting ⟨ΔE({RI})⟩η (in eV)a

λS0 ΔAS0 λS1 ΔAS1 ΔSA0

TGS 2.07 −0.24 1.02 −0.77 0.47
NGS 1.82 0.21 0.81 −1.0
TGS using NGS parameters 1.82 0.21 0.81 −1.0 0.73

aTaken from Ref 31.
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state (η = 0 or 1, marked by colors), the solvation free-energy
curves corresponding to the two different solvation states,
WS0,η(ε) and WS1,η(ε), are illustrated in the figure by different
line styles. The actual free-energy curves Wη(ε), defined by eq
28, exhibit a sharp transition between solvation states when the
corresponding curves meet, and they follow the minimum free-
energy path.
Concerning the comparison between TGS and NGS, apart

from the energy tails below −2 eV or above 1 eV where a
proper optimization of the TGS parameters would improve
agreement between the approaches, the NGS curves do appear
to interpolate smoothly and properly the discontinuous TGS
curves in the intermediate region between minima, the one that
matters for the description of the reaction. The two models
thus carry a fully consistent picture.
In Figures 5 and 6, we compare the same TGS and NGS

diabatic free-energy curves for the Ag0/Ag+ reaction to the ones

obtained by FPMD, using η as the thermodynamic perturbation
parameter and the WHAM technique to reconstruct the
associated free energies.58 The same comparison is presented in
Figure 7 and 8 for the Cu+/Cu2+ redox couple. The agreement
is excellent in all cases. To be more quantitative, we report in
Table 3 the χ2-values, measuring the mean squared distance
between the simulation diabatic free-energy curves, obtained by
weighted histograms, and the theoretical ones. It can be seen
that the quality of the NGS and TGS results is quite close and

that, with respect to the linear response parabolic fit, both
theories improve the χ2-values by 2 orders of magnitude or
more, which is quite remarkable. In those calculations, the
optimized parameters of Tables 1 and 2 were used for TGS. In
Table 4, we also display for both models the values of the
effective reorganization energies defined by λ0 = W0(ΔE1) −

Figure 4. Solvent diabatic free-energy curves for the reduced and
oxidized species in Ag0/Ag+: NGS model (thick dotted-dashed lines)
and TGS model (thick line). The dashed and dotted thin lines
correspond to the two solvation states in the TGS model.

Figure 5. Diabatic free-energy curves for Ag0/Ag+ in aqueous solution:
CP2K simulations (dots) and TGS model (lines). The dashed and
dotted thin lines correspond to the two solvation states in the TGS
model.

Figure 6. Diabatic free-energy curves for Ag0/Ag+ in aqueous solution:
CP2K simulations (dots) and NGS model (dotted-dashed lines).

Figure 7. Diabatic free-energy curves for Cu+ (blue) and Cu2+ (red) in
aqueous solution: CPMD simulations of ref 31 (dots) and TGS model
(lines). The dashed and dotted thin lines correspond to the two
solvation states in the TGS model.

Figure 8. Diabatic free-energy curves for Cu+ (blue) and Cu2+ (red) in
aqueous solution: CPMD simulations of ref 31 (dots) and NGS model
(dotted-dashed lines).

Table 3. χ2 Values on Solvent Diabatic Free-Energy Curves
for Parameters Fitted on Average Vertical Ionization Energy

parabolic TGS NGS

Agaq
0 /Agaq

+ 0.085 0.00020 0.00019
Cuaq

+ /Cuaq
2+ 0.019 0.0020 0.0034
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W0(ΔE0) and λ1 = W1(ΔE0) − W1(ΔE1) (to be clearly
distinguished from the model parameters λS0 and λS1 of Tables 1
and 2). We also give the (unique) value corresponding to the
parabolic linear response fit. Despite the different model
parameters for TGS and NGS, it is very satisfactory to find the
reorganization energies λ0 and λ1 in such a close agreement for
the two models. Note also they are quite separate and on both
sides of the parabolic value, indicating a strong violation of
linear response.
Finally, Table 5 compares for both reactions the values of the

reaction free-energies obtained from eq 15, using either the

FPMD results for ⟨ΔE⟩η or eqs 31 and 35 for the TGS and
NGS models. Again, the numerical agreement appears
excellent, either between the two models or compared with
direct numerical integration. For the Ag0/Ag+ reaction, we can
compute from the data of Table 5 the oxidoreduction potential
of this couple with respect to the normal hydrogen electrode
(NHE), using the reference shift of the Hartree potential for
this setup59,60 and the absolute potential for the NHE, 4.28 V.61

We then obtain E(Ag0/Ag+) = −1.75 VNHE, taking 3.5 V as the
shift of the Hartree potential.59 This value compares favorably
with the experimental estimates E(Ag0/Ag+) = −1.9 and −2.1
VNHE.

62 In this calculation, we neglect the finite size effects.
These are estimated to be much smaller than these differences,
as they were found to behave as R3/L3 where R is the solvation
radius of the studied species and L the box size.59,63 Finite size
effects have, however, a much larger influence on the
reorganization free energies, which are presumably under-
estimated here as a result of a missing contribution from the
reorganization of further solvation shells.64 These terms,
however, are most likely linear and independent of the
solvation state (being associated to far distance reorganization)
and thus lead simply to a uniform increase in the slopes of both
solvation states.

IV. CONCLUSIONS
This paper attracts attention to the fact that the straight Marcus
theory of charge transfer reaction in solution, relying on a
Gaussian solvation picture, or, equivalently, on a linear response
approximation, can be violated. This is the case when solvation
has a quite different character in the reactant and product
states, so that the solvent fluctuations are different. Such an
effect was evidenced by FPMD simulations for the elementary

oxidation reaction Cu+ → Cu2+ + e−, and we found it amplified
in the case of Ag0/Ag+, with a transition between a rather labile
coordination around a neutral, although extremely polarizable,
atom to a more rigid 4-fold coordination around its charged
cation.
To account for such a situation, we have introduced a two-

Gaussian solvation state model that includes the correct physics
by partitioning the solvent phase space into two independent
solvation states and carrying out the corresponding statistical
mechanical treatment based on the energy gap coordinate. The
model was shown to reproduce the correct nonlinear response
behavior, in particular, the sigmoidal shape of the curve ⟨ΔE⟩η
versus η that is found in FPMD simulations, and that appears as
a quite unexpected and “non-traditional” effect. Such agreement
could not be obtained with the Q-model of Matyushov and
Voth,35,36 which extends the Marcus picture beyond linear
response but relies on different physical hypothesis that do not
seem to apply here.
We have also introduced a non-Gaussian solvation model

that starts from a more phenomenological assumption,
irrespective of any underlying Hamiltonian: given a non-
harmonic, generic, polynomial form for the reactant free-energy
curve, the peculiar statistical mechanics of electron transfer
reactions, formulated in the microscopic energy gap coordinate,
can be carried out. The theory relies on two extra parameters
with respect to Marcus theory, and it was shown to be relevant
for the reactions studied in this work, with a degree of precision
similar to that of the two-Gaussian state model. Such a model is
expected to remain valid for a wide range of physicochemical
situations where linear response theory is possibly violated,
leading to various nonlinear behaviors, in particular, for the
curve ⟨ΔE⟩η versus η; this aspect will be rationalized in a
forthcoming publication.
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